Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles
Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles作者机构:School of Automobile Tongji University Shanghai 201804 China
出 版 物:《Journal of Environmental Sciences》 (环境科学学报(英文版))
年 卷 期:2017年第29卷第5期
页 面:354-362页
核心收录:
学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学]
基 金:supported by the National Natural Science Foundation of China(No.50906062)
主 题:Diesel exhaust particle Lubricant sulfur Morphology Nanostructure Primary particle size Elemental composition
摘 要:This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubricant(LS-oil,MS-oil and HS-oil,all of which have different sulfur contents:0.182%,0.583% and 1.06%,respectively)were used in this study. The morphologies and nanostructures of exhaust particles were analyzed using high-resolution transmission electron microscopy(TEM). Size distributions of primary particles were determined through advanced image-processing software. Elemental compositions of exhaust particles were obtained through X-ray energy dispersive spectroscopy(EDS). Results show that as lubricant sulfur contents increase,the macroscopic structure of diesel exhaust particles turn from chain-like to a more complex agglomerate. The inner cores of the core-shell structure belonging to these primary particles change little; the shell thickness decreases,and the spacing of carbon layer gradually descends,and amorphous materials that attached onto outer carbon layer of primary particles increase. Size distributions of primary particles present a unimodal and normal distribution,and higher sulfur contents lead to larger size primary particles. The sulfur content in lubricants directly affects the chemical composition in the particles. The content of C(carbon)decreases as sulfur increases in the lubricants,while the contents of O(oxygen),S(sulfur)and trace elements(including S,Si(silicon),Fe(ferrum),P(phosphorus),Ca(calcium),Zn(zinc),Mg(magnesium),Cl(chlorine)and Ni(nickel))all increase in particles.