咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bayesian Inference and Predict... 收藏

Bayesian Inference and Prediction of Burr Type XII Distribution for Progressive First Failure Censored Sampling

Bayesian Inference and Prediction of Burr Type XII Distribution for Progressive First Failure Censored Sampling

作     者:Ahmed A. Soliman A. H. Abd Ellah N. A. Abou-Elheggag A. A. Modhesh 

作者机构:不详 

出 版 物:《Intelligent Information Management》 (智能信息管理(英文))

年 卷 期:2011年第3卷第5期

页      面:175-185页

学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学] 

主  题:Burr Type XII Distribution Progressive First-Failure Censored Sample Bayesian Estimations Gibbs Sampling Markov Chain Monte Carlo Posterior Predictive Density 

摘      要:This paper deals with Bayesian inference and prediction problems of the Burr type XII distribution based on progressive first failure censored data. We consider the Bayesian inference under a squared error loss function. We propose to apply Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples, and they have in turn, been used to compute the Bayes estimates with the help of importance sampling technique. We have performed a simulation study in order to compare the proposed Bayes estimators with the maximum likelihood estimators. We further consider two sample Bayes prediction to predicting future order statistics and upper record values from Burr type XII distribution based on progressive first failure censored data. The predictive densities are obtained and used to determine prediction intervals for unobserved order statistics and upper record values. A real life data set is used to illustrate the results derived.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分