Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network
Study of CNG/diesel dual fuel engine’s emissions by means of RBF neural network作者机构:CollegeofMechanicalandEnergyEngineeringZhejiangUniversityHangzhou310027China
出 版 物:《Journal of Zhejiang University Science》 (浙江大学学报(自然科学英文版))
年 卷 期:2004年第5卷第8期
页 面:960-965页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 080703[工学-动力机械及工程] 081104[工学-模式识别与智能系统] 08[工学] 0807[工学-动力工程及工程热物理] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China NSFC
主 题:Dual fuel engine Emission performance RBF neural network
摘 要:Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.