咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >BIFURCATION SOLUTIONS OF RESON... 收藏

BIFURCATION SOLUTIONS OF RESONANT CASES OF NONLINEAR MATHIEU EQUATIONS

BIFURCATION SOLUTIONS OF RESONANT CASES OF NONLINEAR MATHIEU EQUATIONS

作     者:陈予恕 梅林涛 

作者机构:Tianjin University Tianjin 300072 PRC The Second Designing Institute Ministry of Nuclear Industry Beijing 100840 PRC 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:1990年第33卷第12期

页      面:1469-1476页

核心收录:

学科分类:07[理学] 08[工学] 

基  金:Project supported by the National Natural Science Foundation of China 

主  题:resonance bifurcation solution nonlinear Mathieu equation symmetry. 

摘      要:The bifurcation solutions of resonant cases, including the main resonance, subharmonic resonance, superharmonic resonance and fractional resonance, are studied with the Liapunov-Schmidt method. The (α’,β’)-plane of every resonant case divides into six open regions; all points inside any one of the six regions give topologically equivalent response diagrams. The boundary arcs separating these six regions are of two distinct types: five of them are of the normal codimension-1 and one is of infinite codimensions. The theoretical base of vibration, control of nonlinear systems is presented.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分