Genome Organization of the SARS-CoV
Genome Organization of the SARS-CoV作者机构:BeijingGenomicsInstituteChineseAcademyofSciencesBeijing101300China CollegeofLifeSciencesPekingUniversityBeijing100871China WenzhouMedicalCollegeWenzhou325003China JamesD.WatsonInstituteofGenomeSciencesZhijiangCampusZhejiangUniversityandHangzhouGenomicsInstituteHangzhou310008China CollegeofMaterialsScienceandChemicalEngineeringYuquanCampusZhejiangUniversityHangzhou310027China
出 版 物:《Genomics, Proteomics & Bioinformatics》 (基因组蛋白质组与生物信息学报(英文版))
年 卷 期:2003年第1卷第3期
页 面:226-235页
核心收录:
学科分类:0710[理学-生物学] 1007[医学-药学(可授医学、理学学位)] 100705[医学-微生物与生化药学] 07[理学] 1001[医学-基础医学(可授医学、理学学位)] 100103[医学-病原生物学] 071005[理学-微生物学] 10[医学]
基 金:National Natural Science Foundation of China NSFC
主 题:SARS-CoV genome annotation transcription ORF PUP TRS
摘 要:Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.