粗糙集的近似集
Approximation Sets of Rough Sets作者机构:重庆邮电大学系统理论及其应用研究中心重庆400065 计算智能重庆市重点实验室(重庆邮电大学)重庆400065
出 版 物:《软件学报》 (Journal of Software)
年 卷 期:2012年第23卷第7期
页 面:1745-1759页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金(61073146) 重庆市教委科学研究项目(KJ110512 KJ110522) 重庆邮电大学博士启动基金(A2010-06)
摘 要:粗糙集是1982年由Pawlak教授提出的解决集合边界不确定的重要方法,它通过两个精确的上、下近似集作为边界线来刻画目标集合(概念)X的不确定性,但它没有给出如何用已知的知识基(知识粒)来精确或近似地描述边界不确定的目标集合(概念)X的方法.首先给出了集合之间的相似度概念,然后分析了分别用上近似集R(X)和下近似集R(X)作为目标集合(概念)X近似描述的不足,提出了在已有知识基(粒)空间下寻找目标集合(概念)X的近似集的方法,并分析了用R0.5(X)作为X(概念)的近似集的优越性.最后讨论了不同知识粒度空间下R0.5(X)与X的相似度随知识粒度的变化关系.从新的角度提出了目标集合(概念)X近似集的构造方法,促进了粗糙集模型的发展.