Analytical exponential model for stochastic point kinetics equations via eigenvalues and eigenvectors
Analytical exponential model for stochastic point kinetics equations via eigenvalues and eigenvectors作者机构:Department of Mathematics Faculty of Science Tanta University
出 版 物:《Nuclear Science and Techniques》 (核技术(英文))
年 卷 期:2016年第27卷第1期
页 面:170-177页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
主 题:动力学方程组 指数模型 随机点 特征值 向量分析 随机微分方程 动力系统 核反应堆
摘 要:The stochastic point kinetics equations with a multi-group of delayed neutrons, which are the system of a couple of stiff stochastic differential equations, are *** analytical exponential model is used to solve the stochastic point kinetics equations in the dynamical system of the nuclear reactor. This method is based on the eigenvalues and corresponding eigenvectors of the coefficient matrix. The analytical exponential model calculates the mean and standard deviations of neutrons and precursor populations for the stochastic point kinetics equations with step, ramp, and sinusoidal *** results of the analytical exponential model are compared with published methods and the results of the deterministic point kinetics model. This comparison confirms that the analytical exponential model is an efficient method for solving stochastic stiff point kinetics equations.