咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Superelasticity and Tunable Th... 收藏

Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range

Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range

作     者:Y.L. Hao H.L. Wang T. Li J.M. Cairney A.V. Ceguerra Y.D. Wang Y. Wang D. Wang E.G. Obbard S.J. Li R. Yang 

作者机构:Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China School of Aerospace Mechanical & Mechatronic Engineering University of Sydney Sydney NSW2006 Australia Australian Centre for Microscopy and Microanalysis University of Sydney Sydney HSW2006 Australia State Key Laborotory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology Xi'an Jiaotong Univemity Xi'an 710049 China Department of Materials Science and engineering Ohio State University Columbus OH 43210 USA Department of Electrical engineering and Telecommunications University of New South Wales Sydney NSW2052 Australia 

出 版 物:《Journal of Materials Science & Technology》 (材料科学技术(英文版))

年 卷 期:2016年第32卷第8期

页      面:705-709页

核心收录:

学科分类:0817[工学-化学工程与技术] 0806[工学-冶金工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0703[理学-化学] 0802[工学-机械工程] 0801[工学-力学(可授工学、理学学位)] 0702[理学-物理学] 

基  金:supported by the National Basic Research Program of China (Nos. 2012CB933901, 2012CB619103, 2012CB619405, 2012CB619402 and 2014CB644003) the National High Technical Program of China (2015AA033702) the National Natural Foundation of China and US (Nos. 51271180, 51571190, 51527801 and DMR-1410322) 

主  题:Ti alloy Superelasticity Thermal expansion behavior Temperature characteristic 

摘      要:Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and energy conversion, but are limited typically in a narrow temperature range of tens of Kelvin. Here we report that, by creating a nano-scale concentration modulation via phase separation, the MT can be rendered continuous by an in-situ elastic confinement mechanism. Through a model titanium alloy, we demon- strate that the elastically confined continuous MT has unprecedented properties, such as superelasticity from below 4.2 K to 500 K, fully tunable and stable thermal expansion, from positive, through zero, to negative, from below 4.2 K to 573 K, and high strength-to-modulus ratio across a wide temperature range. The elastic tuning on the MT, together with a significant extension of the crystal stability limit, provides new opportunities to explore advanced materials.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分