咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Acceleration of the Stochastic... 收藏

Acceleration of the Stochastic Analytic Continuation Method via an Orthogonal Polynomial Representation of the Spectral Function

作     者:WU Quan-Sheng WANG Yi-Lin FANG Zhong DAI Xi 吴泉生;王义林;方忠;戴希

作者机构:Beijing National Laboratory for Condensed Matter Physicsand Institute of PhysicsChinese Academy of SciencesBeijing 100190 

出 版 物:《Chinese Physics Letters》 (中国物理快报(英文版))

年 卷 期:2013年第30卷第9期

页      面:1-4页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Supported by the National Natural Science Foundation of China and the National Basic Research Program of China under Grant No 2007CB925000 

主  题:continuation analytic stochastic 

摘      要:Stochastic analytic continuation is an excellent numerical method for analytically continuing Green’s functions from imaginary frequencies to real frequencies,although it requires significantly more computational time than the traditional MaxEnt *** develop an alternate implementation of stochastic analytic continuation which expands the dimensionless field𝑜n(x)introduced by Beach using orthogonal *** use the kernel polynomial method(KPM)to control the Gibbs oscillations associated with truncation of the expansion in orthogonal *** KPM variant of stochastic analytic continuation delivers improved precision at a significantly reduced computational cost.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分