咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Paramagnetism and improved upc... 收藏

Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

作     者:Chao-Qing YANG Ao-Ju LI Wei GUO Peng-Hua TIAN Xiao-Long YU Zhong-Xin LIU Yang CAO Zhong-Liang SUN 

作者机构:Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University Haikou 570228 China 

出 版 物:《Frontiers of Materials Science》 (材料学前沿(英文版))

年 卷 期:2016年第10卷第1期

页      面:38-44页

核心收录:

学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0702[理学-物理学] 

基  金:Acknowledgements Authors would like to acknowledge the National Natural Science Foundation of China (NSFC  Grant No. 51361009)  the International Joint Project of Hainan Province (Grant No. KJHZ2014-19)  the Postgraduate Innovative Project of Hainan Province in 2015 (Grant No. Hys2015-24) and the Postgraduate Practice & Innovation Projects of Hainan University in 2015 for financial support. The Instrumental Analysis Center of Hainan University is also acknowledged here 

主  题:boiling water upconversion nanoparticle fluorescence imaging paramagnetism 

摘      要:In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form a-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,ErlNaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350℃ and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln^3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI)o The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 ***-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分