咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >THERMODYNAMIQUE DES ENSEMBLES ... 收藏

THERMODYNAMIQUE DES ENSEMBLES DE CANTOR AUTOSIMILAIRES (THERMODYNAMICS OF SELF-SIMILAR CANTOR SETS)

THERMODYNAMIQUE DES ENSEMBLESDE CANTOR AUTOSIMILAIRES(THERMODYNAMICS OF SELF-SIMILAR CANTOR SETS)

作     者:G. MICHON J. PEYRIERE(University de Bourgogne, URA 755, BP 138, 21004 Dijon, dance.)(University de Paris-Sud, Centre d’Orsayl URA 757, 91405 Orsayt dance.) G. MICHON;J. PEYRIERE(University de Bourgogne, URA 755, BP 138, 21004 Dijon, dance.)(University de Paris-Sud, Centre d’Orsayl URA 757, 91405 Orsayt dance.)

作者机构:Universite de Bourgogne 法国 Universite de Paris-Sud 法国 

出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))

年 卷 期:1994年第15卷第3期

页      面:253-272页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:Cantor set Graph Dimension Thermodynamics Gibbs meajsure,Multifractals. 

摘      要:A class of metric, compact, and totally disconllected spaces, called self-similar Cantor setsis illtroduced. A self-similar structure is defined to be a graph with weighted edges. Theintroduction of ultrametrics and quasi-isometries gives versatility to this construction. Thermodynamical functions as free energy and elltropy are associated with self-similar *** analysis, based on a Large Deviations inequality and Gibbs measures, leads toa fairly general Hausdoffi dimension theorem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分