THERMODYNAMIQUE DES ENSEMBLES DE CANTOR AUTOSIMILAIRES (THERMODYNAMICS OF SELF-SIMILAR CANTOR SETS)
THERMODYNAMIQUE DES ENSEMBLESDE CANTOR AUTOSIMILAIRES(THERMODYNAMICS OF SELF-SIMILAR CANTOR SETS)作者机构:Universite de Bourgogne 法国 Universite de Paris-Sud 法国
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:1994年第15卷第3期
页 面:253-272页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Cantor set Graph Dimension Thermodynamics Gibbs meajsure,Multifractals.
摘 要:A class of metric, compact, and totally disconllected spaces, called self-similar Cantor setsis illtroduced. A self-similar structure is defined to be a graph with weighted edges. Theintroduction of ultrametrics and quasi-isometries gives versatility to this construction. Thermodynamical functions as free energy and elltropy are associated with self-similar *** analysis, based on a Large Deviations inequality and Gibbs measures, leads toa fairly general Hausdoffi dimension theorem.