Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?
Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?作者机构:Department of Anatomy Li Ka Shing Faculty of Medicine the University of Hong Kong Department of Spine Surgery Renmin Hospital of Wuhan University State Key Laboratory of Brain and Cognitive Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Research Center of Reproduction Development and Growth Li Ka Shing Faculty of Medicine the University of Hong Kong GHM Institute of Central Nervous System Regeneration Jinan University
出 版 物:《Neural Regeneration Research》 (中国神经再生研究(英文版))
年 卷 期:2013年第8卷第7期
页 面:581-592页
核心收录:
学科分类:1001[医学-基础医学(可授医学、理学学位)] 100101[医学-人体解剖与组织胚胎学] 10[医学]
基 金:supported by a grant from the University of Hong Kong China
主 题:neural regeneration stem cells neural stem cells adult neonate mammals Pb2+ neurotoxicity viability proliferation hippocampus photographs-containing paper neuroregeneration
摘 要:Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+from lead acetate [Pb (0H30OO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 48-hour exposure to 0-200 pM Pb2+. In the second part, 10 pM bromodeoxyuridine was added into the culture medium of passage 2 hippocampal neural stem cells after 48-hour exposure to 0- 200 pM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural stem cells were allowed to grow in the differentiation medium with 0-200 pM Pb2+. Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2~ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in v