Online Weakly DR-Submodular Optimization Under Stochastic Cumulative Constraints
作者机构:Beijing Institute for Scientific and Engineering ComputingBeijing University of TechnologyBeijing 100124China
出 版 物:《Tsinghua Science and Technology》 (清华大学学报自然科学版(英文版))
年 卷 期:2024年第29卷第6期
页 面:1667-1673页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the National Natural Science Foundation of China(Nos.12101587,12001025,and 12131003) the China Postdoctoral Science Foundation(No.2022M720329) the Postdoctoral Research Foundation of Chaoyang District(Nos.Q1006E11202301 and Q1006E11202302)
主 题:online maximization weakly DR-submodular regret stochastic
摘 要:In this paper,we study a class of online continuous optimization *** each round,the utility function is the sum of a weakly diminishing-returns(DR)submodular function and a concave function,certain cost associated with the action will occur,and the problem has total limited *** the two methods,the penalty function and Frank-Wolfe strategies,we present an online method to solve the considered *** appropriate stepsize and penalty parameters,the performance of the online algorithm is guaranteed,that is,it achieves sub-linear regret bound and certain mild constraint violation bound in expectation.