咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multi-Scale Binocular Stereo M... 收藏

Multi-Scale Binocular Stereo Matching Based on Semantic Association

作     者:Jin ZHENG Botao JIANG Wei PENG Qiaohui ZHANG Jin ZHENG;Botao JIANG;Wei PENG;Qiaohui ZHANG

作者机构:State Key Laboratory of Virtual Reality Techonology and Systems Beihang University School of Computer Science and Engineering Beihang University 

出 版 物:《Chinese Journal of Electronics》 (电子学报(英文))

年 卷 期:2024年第33卷第4期

页      面:1010-1022页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080203[工学-机械设计及理论] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China (Grant No. 61876014) 

主  题:Costs Accuracy Attention mechanisms Fuses Computational modeling Semantics Estimation 

摘      要:Aiming at the low accuracy of existing binocular stereo matching and depth estimation methods, this paper proposes a multi-scale binocular stereo matching network based on semantic association. A semantic association module is designed to construct the contextual semantic association relationship among the pixels through semantic category and attention mechanism. The disparity of those regions where the disparity is easily estimated can be used to assist the disparity estimation of relatively difficult regions, so as to improve the accuracy of disparity estimation of the whole image. Simultaneously, a multi-scale cost volume computation module is proposed. Unlike the existing methods, which use a single cost volume, the proposed multi-scale cost volume computation module designs multiple cost volumes for features of different scales. The semantic association feature and multi-scale cost volume are aggregated, which fuses the high-level semantic information and the low-level local detailed information to enhance the feature representation for accurate stereo matching. We demonstrate the effectiveness of the proposed solutions on the KITTI2015 binocular stereo matching dataset, and our model achieves comparable or higher matching performance, compared to other seven classic binocular stereo matching algorithms.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分