超声人工智能辅助诊断系统在最大径≤2 cm的BI-RADS 4类乳腺结节诊断中的应用价值
Ultrasonic artificial intelligence system in diagnosis of BI-RADS class 4 breast nodules with maximum diameter≤2 cm作者机构:上海中医药大学附属曙光医院超声医学科上海201203 同济大学附属上海市第四人民医院超声医学科上海200434
出 版 物:《海军军医大学学报》 (Academic Journal of Naval Medical University)
年 卷 期:2024年第45卷第5期
页 面:592-598页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 100207[医学-影像医学与核医学] 1002[医学-临床医学] 100210[医学-外科学(含:普外、骨外、泌尿外、胸心外、神外、整形、烧伤、野战外)] 08[工学] 1010[医学-医学技术(可授医学、理学学位)] 10[医学]
基 金:上海市虹口区卫生健康委员会医学科研课题(虹卫2302-26) 上海市虹口区卫生健康委员会临床重点扶持专科项目(HKLCFC202404) 海军军医大学(第二军医大学)第二附属医院人才建设三年行动计划——“金字塔人才工程”军事医学人才项目(1009) 同济大学附属上海市第四人民医院科研启动专项(SYKYQD06101)
主 题:超声检查 人工智能 计算机辅助诊断系统 乳腺肿瘤 乳腺影像报告与数据系统
摘 要:目的探讨超声人工智能(AI)辅助诊断系统对最大径≤2 cm的乳腺影像报告与数据系统(BI-RADS)4类乳腺结节的诊断价值。方法回顾性分析2020年5月至2022年10月于上海中医药大学附属曙光医院进行超声检查并诊断为BI-RADS 4类乳腺结节的204例患者共210个最大径≤2 cm结节的二维超声图像。以术后病理结果为金标准,评价常规超声和AI系统(风险评分值阈值设为0.65、0.70)对最大径≤2 cm的BI-RADS 4类乳腺结节良恶性的诊断效能。结果210个乳腺结节中良性结节94个,恶性结节116个。高年资超声医师常规超声检查诊断乳腺结节良恶性的灵敏度为92.24%,特异度为75.53%,准确度为84.76%;AI系统(阈值0.65)诊断乳腺结节良恶性的灵敏度为92.24%,特异度为71.28%,准确度为82.86%;AI系统(阈值0.70)诊断乳腺结节良恶性的灵敏度为90.52%,特异度为79.79%,准确度为85.71%。AI系统(阈值0.70)诊断BI-RADS 4a类结节的准确度高于常规超声和AI系统(阈值0.65)(79.41%vs 77.94%、75.00%)。高年资超声医师通过常规超声对最大径≤1 cm的结节诊断准确度最高,为86.36%,AI系统(阈值0.65)及AI系统(阈值0.70)准确度分别为81.82%、84.09%。结论超声AI辅助诊断系统可辅助鉴别诊断最大径≤2 cm的BI-RADS 4类乳腺结节的良恶性。