Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle
Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle作者机构:DepartmentofChemistryandWarwickAnalyticalScienceCentreUniversityofWarwickCoventryCV47ALUK MOACDoctoralTrainingCentreUniversityofWarwickCoventryCV47ALUK MathematicsUniversityofBirminghamEdgbastonBirminghamWestMidlandsB152TTUK CentreforMechanochemicalCellBiologyWarwickMedicalSchoolUniversityofWarwickCoventryCV47ALUK PhysiologyandPharmacologyUniversityofBristolUniversityWalkBristolBS81TDUK ClinicalSciencesWhitsonStreetUniversityofBristolBristolBS13NYUK SchoolofChemistryUniversityofBirminghamEdgbastonBirminghamWestMidlandsB152TTUK BiosciencesUniversityofBirminghamEdgbastonBirminghamWestMidlandsB152TTUK ChemicalEngineeringUniversityofBirminghamEdgbastonBirminghamWestMidlandsB152TTUK SchoolofMedicineUniversityofNottinghamQueen'sMedicalCentreNottinghamNG27UHUK BiochemistryUniversityofBristolUniversityWalkBristolBS81TDUK
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2015年第8卷第10期
页 面:3307-3315页
核心收录:
学科分类:071011[理学-生物物理学] 0710[理学-生物学] 07[理学] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:Engineering and Physical Sciences Research Council (M. J. S., K. P. A., T. R. D., M. R. H.) European Union FP7 Marie Curie Initial Training Network (Innovative Doctoral Programme: D. P. L., A. R.) The Science City Research Alliance (K. P. A.) Bizkaia Talent Fellowship Engineering and Physical Sciences Research Council (MOAC Doctoral Training Centre A. W.) Medical Research Council(A. H. J. S., K. B. B.) British Heart Foundation(R. R. F.) British Heart Foundation(A. S.) British Heart Foundation(K. P. A., D. O. B., T. R. D.) the Libyan higher education ministry(H. E. E.)
主 题:microfluidics nanoparticle M13 bacteriophage wall shear stress fluorescent microscopy
摘 要:The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics.