基于BP神经网络的飞轮转子全系统模型
作者机构:华北电力大学能源动力与机械工程学院
出 版 物:《华北电力大学学报(自然科学版)》 (Journal of North China Electric Power University(Natural Science Edition))
年 卷 期:2024年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 081104[工学-模式识别与智能系统] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:飞轮转子 全系统模型 BP神经网络 有限元方法 替代映射
摘 要:在前人的研究中,转子动力学模型和系统调度模型分属不同研究领域,缺乏完整的飞轮转子全系统模型,难以有效分析飞轮储能系统中复杂的电-磁-力耦合问题。为了解决这一问题,通过替代映射方法,使用有限元模型参数化计算结果训练BP神经网络,构造了AMB、PMSM和PMB模块,并与飞轮转子动力学模型、功率-电流-转速模块和PID控制器等组成一个完整的飞轮储能全系统模型。该模型成功应用于燃煤火电机组二次调频和风电输出平滑场景,可以同时计算飞轮储能系统的功率跟随和转子运动情况。仿真结果表明不同的转速起点,会改变转子的转动频率变化范围,从而影响转子振幅等安全参数。该模型具有接近实时的仿真速度。研究结果为飞轮储能系统的设计优化和运行控制提供了重要工具。