BEZIER SPLINES INTERPOLATION ON STIEFEL AND GRASSMANN MANIFOLDS
作者机构:Department of MathematicsUniversity of SousseTunisia LIMOS-CNRSUniversity of Clermont AuvergneFrance
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2024年第42卷第6期
页 面:1554-1578页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Optimization B´ezier spline Curve fitting Grassmann manifolds Stiefel manifolds Canonical metrics
摘 要:We propose a new method for smoothly interpolating a given set of data points on Grassmann and Stiefel manifolds using a generalization of the De Casteljau *** that end,we reduce interpolation problem to the classical Euclidean setting,allowing us to directly leverage the extensive toolbox of spline *** interpolated curve enjoy a number of nice properties:The solution exists and is optimal in many common *** applications,the structures with respect to chosen Riemannian metrics are detailed resulting in additional computational advantages.