Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low‑Strain and Fast‑Charging Anode for Lithium‑Ion Batteries
作者机构:Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic SystemsShenzhen Engineering Lab for Supercapacitor MaterialsSchool of Material Science and EngineeringHarbin Institute of TechnologyShenzhenUniversity TownShenzhen 518055People’s Republic of China Songshan Lake Materials Laboratory DongguanDongguan 523808GuangdongPeople’s Republic of China Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen 518055People’s Republic of China
出 版 物:《Nano-Micro Letters》 (纳微快报(英文版))
年 卷 期:2024年第16卷第5期
页 面:333-351页
核心收录:
学科分类:0808[工学-电气工程] 07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:All authors acknowledge fund support from Guangdong Basic and Applied Basic Research Foundation(2020A1515110762) National Natural Science Foundation of China(52172084)
主 题:Amorphous Si nanodots Low-strain Fast-charging Lithium-ion batteries
摘 要:Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion ***,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/*** high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+***,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode *** assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications.