Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
作者机构:Institute for Advanced Manufacturing and Modern Equipment TechnologyJiangsu UniversityZhenjiang 212013China
出 版 物:《Journal of Wuhan University of Technology(Materials Science)》 (武汉理工大学学报(材料科学英文版))
年 卷 期:2024年第39卷第1期
页 面:174-181页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No.6140922010201) the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)
主 题:aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
摘 要:The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.