基于改进概率路线图算法的煤矿机器人路径规划方法
A path-planning method for coal mine robot based on improved probability road map algorithm作者机构:中国矿业大学(北京)机电与信息工程学院北京100083 煤矿智能化与机器人创新应用应急管理部重点实验室北京100083
出 版 物:《工矿自动化》 (Journal Of Mine Automation)
年 卷 期:2023年第49卷第6期
页 面:175-181页
学科分类:081901[工学-采矿工程] 0819[工学-矿业工程] 08[工学]
基 金:国家自然科学基金面上项目(51874308) 国家重点基础研究发展计划(973计划)项目(2014CB046306)
主 题:煤矿机器人 路径规划 概率路线图算法 人工势场法 D^(*)Lite算法
摘 要:路径规划是煤矿机器人在煤矿井下非结构化狭长受限空间中应用亟待解决的关键技术之一。针对传统概率路线图(PRM)算法在空间狭长封闭巷道环境中难以保障采样的节点均匀分布于自由空间中导致路径规划失效,以及节点可能距离障碍物较近导致规划的路径可通行性差等问题,提出了一种基于改进PRM算法的煤矿机器人路径规划方法。在构造阶段引入人工势场法,将落在障碍物中的节点沿与其距离最近自由空间中的节点连线方向推至自由空间,并在障碍物边缘建立斥力场,实现节点的均匀分布且使其距离障碍物有一定距离;在查询阶段融合D^(*)Lite算法,当遇到动态障碍物或前方无法通行时可实现路径的重规划。仿真结果表明:改进PRM算法的节点均匀分布在自由空间中,且均距离障碍物一定距离,提高了路径规划的安全性;当节点数为100个时,改进PRM算法成功率较传统PRM算法提高了25%;随着节点数增加,传统PRM算法和改进PRM算法路径规划成功次数均呈增长趋势,但改进PRM算法在效率方面优势更明显;当节点数为400个时,改进PRM算法运行效率较传统PRM算法提高了35.13%,且规划的路径更平滑,路径长度更短;当障碍物突然出现时,改进PRM算法能够实现路径的重规划。