Sizing up feature descriptors for macromolecular machine learning with polymeric biomaterials
作者机构:Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
出 版 物:《npj Computational Materials》 (计算材料学(英文))
年 卷 期:2023年第9卷第1期
页 面:1287-1296页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:properties prediction biomaterials
摘 要:It has proved challenging to represent the behavior of polymeric macromolecules as machine learning features for biomaterial interaction *** are several approaches to this representation,yet no consensus for a universal representational framework,in part due to the sensitivity of biomacromolecular interactions to polymer *** help navigate the process of feature engineering,we provide an overview of popular classes of data representations for polymeric biomaterial machine learning while discussing their merits and ***,increasing the accessibility of polymeric biomaterial feature engineering knowledge will contribute to the goal of accelerating clinical translation from biomaterials discovery.