咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >雾计算网络中联邦学习协同的内容缓存方案 收藏

雾计算网络中联邦学习协同的内容缓存方案

Federated Learning Collaborative Content Caching Scheme in Fog Computing Networks

作     者:黄晓舸 王凡 陈志 陈前斌 HUANG Xiaoge;WANG Fan;CHEN Zhi;CHEN Qianbin

作者机构:重庆邮电大学通信与信息工程学院重庆400065 

出 版 物:《北京邮电大学学报》 (Journal of Beijing University of Posts and Telecommunications)

年 卷 期:2023年第46卷第2期

页      面:22-28页

核心收录:

学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 081001[工学-通信与信息系统] 

基  金:国家自然科学基金项目(61831002) 

主  题:边缘缓存 联邦学习 内容推荐 雾计算网络 

摘      要:为了减小内容获取的时延,保护用户隐私并提高用户体验,提出一种雾计算网络中结合联邦学习和推荐算法优化内容缓存性能的方案。首先,构建了端到端协作的雾计算网络模型,用户可通过端到端和无线链路从用户端、雾节点和云端获取内容;其次,在本地建立深度神经网络模型,利用历史请求数据训练本地模型,利用雾节点聚合本地模型,从而预测全局内容的流行度,同时,向用户提供个性化内容推荐列表,以提高缓存命中率;最后,使用真实数据集进行了仿真实验,实验结果表明,所提方案能有效降低内容的获取时延,提升缓存命中率。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分