An in-depth understanding of photophysics in organic photocatalysts
An in-depth understanding of photophysics in organic photocatalysts作者机构:Key Laboratory of Semiconductor Materials ScienceBeijing Key Laboratory of Low Dimensional Semiconductor Materials and DevicesInstitute of SemiconductorsChinese Academy of SciencesBeijing 100083China Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing 100049China Fachgebiet Angewandte NanophysikInstitut für Physik&IMN MacroNanoTechnische Universität IlmenauIlmenau 98693Germany
出 版 物:《Journal of Semiconductors》 (半导体学报(英文版))
年 卷 期:2023年第44卷第3期
页 面:9-12页
核心收录:
学科分类:081704[工学-应用化学] 081705[工学-工业催化] 07[理学] 070304[理学-物理化学(含∶化学物理)] 08[工学] 0817[工学-化学工程与技术] 0703[理学-化学]
主 题:separation semiconductors replace
摘 要:The urgent need to replace conventional fossil fuels with clean energy has stimulated a large number of research efforts on photocatalytic hydrogen evolution[1−4].Alternatively,organic semiconductors with tunable light absorption,well-positioned band edges,and excellent charge separation are highly expected[5−8].Conventionally,a semiconductor material with a wide band gap has a larger exciton binding energy,while a semiconductor material with a narrow band gap has a smaller exciton binding energy[9].Since smaller exciton binding energies are favorable for exciton separation,choosing a semiconductor with a suitable bandgap seems to be the first step toward high solar-to-hydrogen *** tunable light-harvesting ability determines the advantage and potential of organic semiconductors as ***,the insufficient external quantum efficiency(EQE)and the un-derlying photophysical mechanism remain restricting the orientation toward industrialization[10].