On fundamental groups related to the Hirzebruch surface F_1
On fundamental groups related to the Hirzebruch surface F_1作者机构:Department of MathematicsBar-Ilan University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2008年第51卷第4期
页 面:728-745页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:This work was supported by the Emmy Noether Institute Fellowship(by the Minerva Foundation of Germany) Israel Science Foundation(Grant No.8008/02-3)
主 题:Hirzebruch surfaces degeneration generic projection branch curve braid monodromy fundamental group classification of surfaces
摘 要:Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invariants,stable on *** this factorization,one can compute the fundamental group of the complement of the branch curve,either in C^2 or in CP^*** this article,we show that these groups,for the Hirzebruch surface F_1,(a,b),are *** is, they are an extension of a solvable group,which strengthen the conjecture on degeneratable surfaces.