L^2(R^n) Boundedness for a Class of Multilinear Singular Integral Operators
L2(Rn) Boundedness for a Class of Multilinear Singular Integral Operators作者机构:DepartmentofAppliedMathdematicsUniversityofInformationEngineeringP.O.Box1001-747Zhengzhou450002P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2003年第19卷第2期
页 面:397-404页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:国家自然科学基金
主 题:Multilinear singular integral operator BMO(ℝ n ) Fourier transform estimate 42B20
摘 要:The L^2(A^n) boundedness for the multilinear singular integral operators defined by$T_A f\left( x \right) = \int_{Ropf^n } {{{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + 1} }}} \left( {A\left( x \right) - A\left( y \right) - \nabla A\left( y \right)\left( {x - y} \right)} \right)f\left( y \right)dy$is considered, whereQ is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, A has derivatives of order one in BMO(A^n). A sufficient condition based on the Fourier transform estimate and implying the L^2(A^n) boundedness for the multilinear operator TA is given.