结合轻量级麦穗检测模型和离线Android软件开发的田间小麦测产
Combining lightweight wheat spikes detecting model and offline Android software development for in-field wheat yield prediction作者机构:南京农业大学前沿交叉研究院/植物表型组学研究中心/江苏省现代作物生产省部共建协同创新中心南京210095 南京农业大学工学院南京210095 南京农业大学农学院南京210095 南京农业大学经济管理学院南京210095 英国剑桥作物研究中心/英国国立农业植物研究所英国剑桥CB30LE
出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)
年 卷 期:2021年第37卷第19期
页 面:156-164页
核心收录:
学科分类:082804[工学-农业电气化与自动化] 08[工学] 0828[工学-农业工程]
基 金:江苏省基础研究计划(BK20191311) 江苏省现代农业重点项目(BE2019383) 中央高校基本科研专项资金(JCQY201902)
主 题:模型 算法 产量 轻量级深度学习 麦穗计数 Android软件开发 小麦
摘 要:单位面积麦穗数是重要的产量构成因素之一,通过该性状和不同品种历史数据在田间完成对小麦产量的预估,对育种栽培和农业生产具有非常重要的意义。该研究基于小麦田间栽培试验提出了一套结合轻量级深度学习技术和小麦测产算法在Android(安卓)智能手机上离线分析单位面积穗数和田间测产的技术方案。首先介绍了手机标准化俯拍小麦冠层和手机端图像预处理算法,再根据灌浆期小麦冠层图像构建了MobileNetV2-YOLOV4深度学习模型对单位面积中的麦穗进行识别,然后结合迁移学习和***转换器完成了模型轻量化,最后通过AndroidSDK和SQLite构建了不同小麦品种在手机端的产量数据库和人机交互图形界面。开发的安卓软件YieldQuant-Mobile(YQ-M)可离线识别手机拍摄的麦穗数量,并在田间完成产量预测和结果输出等功能。基于从中国各小麦主产区中选择的80个代表性品种(共240个1 m^(2)小区),使用YQ-M完成了这些品种的麦穗检测和小区测产研究。结果显示YQ-M的精确率、召回率、平均精确度和F1分数分别为84.43%,91.05%,91.96%和0.88。单位面积测产结果和实际产量的决定系数为0.839,均方根误差为17.641 g/m^(2)。研究表明YQ-M对麦穗识别精度高,在田间环境下测产结果和算法鲁棒性良好。此外,YQ-M还具有良好的扩展性,可为其他作物的离线智能测产提供借鉴,并为小麦研究和生产实践提供低成本、便捷可靠的田间测产方法。