The twoscale asymptotic error analysis for piezoelectric problems in the quasi-periodic structure
The twoscale asymptotic error analysis for piezoelectric problems in the quasi-periodic structure作者机构:School of Mathematics and Information Sciences Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes Guangzhou University Guangzhou 510006 China Department of Mathematics University of California San Diego 92093 USA Department of Mathematics Tongji University Shanghai 200092 China
出 版 物:《Science China(Physics,Mechanics & Astronomy)》 (中国科学:物理学、力学、天文学(英文版))
年 卷 期:2013年第56卷第10期
页 面:1844-1853页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0702[理学-物理学]
基 金:supported by the National Natural Science Foundation of China(Grant Nos.10801042,11126132,and 11171257) the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20104410120001) San Diego supported by China Scholarship Council from July 2012 to July 2013
主 题:twoscale method piezoelectricity quasi-periodic structure homogenization constants
摘 要:Applications for piezoelectric effect have grown rapidly, and piezoelectric materials play important roles in countless areas of modem life. By means of twoscale method and coupled boundary layer, some new kinds of twoscale asymptotic expansions for solutions to the electrical potential and the displacement in quasi-periodic structure under coupled piezoelectric effect are derived, and the homogenization constants of piezoelectric materials are presented. The coupled twoscale relation between the electrical potential and the displacement is set up, and some improved asymptotic error estimates are analyzed.