咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nonparametric estimation for s... 收藏

Nonparametric estimation for stationary and strongly mixing processes on Riemannian manifolds

作     者:Amour T.Gbaguidi Amoussou Freedath Djibril Moussa Carlos Ogouyandjou Mamadou Abdoul Diop 

作者机构:IMSPUniversitéd’Abomey-Calavi(UAC)DangboBenin FASTUniversitéd’Abomey-CalaviAbomey-CalaviBenin UniversitéGaston BergerDakarSenegal 

出 版 物:《Communications in Mathematics and Statistics》 (数学与统计通讯(英文))

年 卷 期:2022年第10卷第4期

页      面:599-621页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Riemannian manifolds Nonparametric estimation Kernel density estimation Stationary and strongly mixing processes Strong consistency 

摘      要:In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is *** this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of the joint probability density function,of the conditional probability density functions and of the conditional expectations of functionals of X_(j)given the past behavior of the *** prove the strong consistency of these estimators under sufficient conditions,and we illustrate their performance through simulation studies and real data analysis.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分