Fractal interpolation:a sequential approach
Fractal interpolation: a sequential approach作者机构:Department of MathematicsVisvesvaraya National Institute of Technology NagpurNagpur 440010India Departamento de Matem´atica AplicadaEscuela de Ingenier´ıa y ArquitecturaUniversidad de ZaragozaZaragoza 50018Spain
出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))
年 卷 期:2021年第36卷第3期
页 面:330-341页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:Supported by Council of Scienti c&Industrial Research(CSIR) India(25(0290)/18/EMR-II)
主 题:fractal interpolation convergence sequence of operators constrained-FIFs fractal splines
摘 要:Fractal interpolation is a modern technique to fit and analyze scientific *** develop a new class of fractal interpolation functions which converge to a data generating(original)function for any choice of the scaling ***,our method offers an alternative to the existing fractal interpolation functions(FIFs).We construct a sequence of-FIFs using a suitable sequence of iterated function systems(IFSs).Without imposing any condition on the scaling vector,we establish constrained interpolation by using fractal *** particular,the constrained interpolation discussed herein includes a method to obtain fractal functions that preserve positivity inherent in the given *** existence of Cr--FIFs is *** identify suitable conditions on the associated scaling factors so that-FIFs preserve r-convexity in addition to the Cr-smoothness of original function.