Rapid, cost-effective DNA quantification via a visuallydetectable aggregation of superparamagnetic silicamagnetite nanoparticles
Rapid, cost-effective DNA quantification via a visuallydetectable aggregation of superparamagnetic silicamagnetite nanoparticles作者机构:Department of Chemistry University of Virginia McCormick Road P. O. Box 400319 Charlottesville 22904 Virginia USA Department of Pathology University of Virginia Health Science Center Charlottesville 22908 Virginia USA Department of Mechanical Engineering University of Virginia Charlottesville 22904 Virginia USA Center for Microsystems forthe Life Sciences University of Virginia Charlottesville 22904 Virginia USA Department of Materials Science & Engineering University of Virginia P. O. Box 400745 395 McCormick Road Charlottesville 22904-4745 Virginia USA Department of Chemical Engineering University of Virginia. 123 Engineers Way Charlottesville 22904 Virginia USA
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2014年第7卷第5期
页 面:755-764页
核心收录:
学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 081702[工学-化学工艺] 081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术]
主 题:silica/magnetite core-shell superparamagnetic DNA quantification polymerase chain reaction(PCR)
摘 要:DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe304 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be -200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.