Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells
Bioinspired 分子在平面 perovskite 太阳能电池的埋葬的接口为双边的 synergistic 钝化设计作者机构:School of Materials Science and EngineeringHenan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou 450001China Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences100190 BeijingChina State Key Laboratory of Silicon Materials&School of Materials Science and EngineeringZhejiang UniversityHangzhou 310027China
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2022年第15卷第2期
页 面:1069-1078页
核心收录:
学科分类:080903[工学-微电子学与固体电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:support from the National Key R&D Program of China(No.2018YFA0208501) the National Nature Science Foundation of China(Nos.51803217,51773206,91963212,and 51961145102[BRICS project]) Beijing National Laboratory for Molecular Sciences(Nos.BNLMS-CXXM-202005 and 2019BMS20003) K.C.Wong Education Foundation,Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005) Key R&D and Promotion Project of Henan Province(No.192102210032) Open Project of State Key Laboratory of Silicon Materials(No.SKL2019-10) Outstanding Young Talent Research Fund of Zhengzhou University
主 题:perovskite solar cells bioinspired bilateral passivation buried interfaces catechol derivatives
摘 要:Trap-mediated energy loss in the buried interface with non-exposed feature constitutes one of the serious challenges for achieving high-performance perovskite solar cells(PSCs).Inspired by the adhesion mechanism of mussels,herein,three catechol derivatives with functional Lewis base groups,namely 3,4-Dihydroxyphenylalanine(DOPA),3,4-Dihydroxyphenethylamine(DA)and 3-(3,4-Dihydroxyphenyl)propionic acid(DPPA),were strategically *** molecules as interfacial linkers are incorporated into the buried interface between perovskite and SnO_(2) surface,achieving bilateral synergetic passivation *** crosslinking can produce secondary bonding with the undercoordinated Pb^(2+) and Sn^(4+) *** PSCs treated with DOPA exhibited the best performance and operational *** the DOPA passivation,a stabilized power conversion efficiency(PCE)of 21.5%was demonstrated for the planar *** 55 days of room-temperature storage,the unencapsulated devices with the DOPA crosslinker could still maintain 85%of their initial performance in air under relative humidity of-15%.This work opens up a new strategy for passivating the buried interfaces of perovskite photovoltaics and also provides important insights into designing defect passivation agents for other perovskite optoelectronic devices,such as light-emitting diodes,photodetectors,and lasers.