Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials
作者机构:Microstructure Physics and Alloy DesignMax-Planck-Institut für EisenforschungDüsseldorfGermany DeepMetisBerlinGermany
出 版 物:《npj Computational Materials》 (计算材料学(英文))
年 卷 期:2021年第7卷第1期
页 面:899-908页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Projekt DEAL
主 题:artificial network faster
摘 要:We propose a deep neural network(DNN)as a fast surrogate model for local stress calculations in inhomogeneous non-linear *** show that the DNN predicts the local stresses with 3.8%mean absolute percentage error(MAPE)for the case of heterogeneous elastic media and a mechanical contrast of up to factor of 1.5 among neighboring domains,while performing 103 times faster than spectral *** DNN model proves suited for reproducing the stress distribution in geometries different from those used for *** the case of elasto-plastic materials with up to 4 times mechanical contrast in yield stress among adjacent regions,the trained model simulates the micromechanics with a MAPE of 6.4%in one single forward evaluation of the network,without any *** results reveal an efficient approach to solve non-linear mechanical problems,with an acceleration up to a factor of 8300 for elastic-plastic materials compared to typical solvers.