Tunable and stable localized surface plasmon resonance in SrMoO_(4) for enhanced visible light driven nitrogen reduction
可调控且稳定的SrMoO_(4)等离激元共振用于增强的可见光驱动的氮还原作者机构:Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an 710126ShaanxiChina Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu 610054SichuanChina National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing 100190China Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinan 250022ShandongChina
出 版 物:《Chinese Journal of Catalysis》 (催化学报(英文))
年 卷 期:2021年第42卷第10期
页 面:1763-1771页
核心收录:
学科分类:081702[工学-化学工艺] 081705[工学-工业催化] 08[工学] 0817[工学-化学工程与技术] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)]
基 金:国家重点研发计划政府间国际科技创新合作/港澳台科技创新合作重点专项(2019YFE0121600) 陕西省自然科学基金(2019JM-298) 西安电子科技大学研究生创新基金(YJS2113)
主 题:SrMoO4 Plasmonic semiconductor Localized surface plasmon resonance Oxygen vacancy Photocatalytic nitrogen reduction
摘 要:Photocatalytic nitrogen reduction for the green synthesis of ammonia at ambient conditions has been slowed by the narrow light harvesting range,low activity and high charge recombination of *** semiconducting nanomaterials are becoming the promising candidates for nitrogen photofixation because of the broad absorption spectrum,rich defects and hot *** the present study,plasmonic SrMoO_(4) is developed by regulating the concentration of oxygen vacancies that are accompanied in the reduction process from Mo^(6+) to Mo^(5+).The stable and tunable localized surface plasmon resonance(LSPR)absorption in visible and near infrared light range makes the wide bandgap SrMoO_(4) utilize the solar energy more *** electrons from both the intrinsic band excitation and the LSPR excitation enable the reduction of dinitrogen molecules thermodynamically in ultrapure water to *** work provides a unique clue to design efficient photocatalysts for nitrogen fixation.