咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Defect Detection in CK45 Steel... 收藏

Defect Detection in CK45 Steel Structures through C-scan Images Using Deep Learning Method

作     者:Navid Moshtaghi Yazdani 

作者机构:Department of Electrical EngineeringMashhad branchIslamic Azad UniversityMashhadIran 

出 版 物:《Artificial Intelligence Advances》 (人工智能进展(英文))

年 卷 期:2021年第3卷第1期

页      面:44-51页

学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 

主  题:Deep neural network Deep learning Magnetic field measurement Anisotropic magneto-resistive Machine learning CK45 steel 

摘      要:In the present paper,a method for reliable estimation of defect profile in CK45 steel structures is presented using an eddy current testing based measurement system and post-processing system based on deep learning *** a deep learning method is used to determine the defect characteristics in metallic structures by magnetic field C-scan images obtained by an anisotropic magneto-resistive *** designed and adjusting the deep convolution neural network and applied it to C-scan images obtained from the measurement system,the performance of deep learning method proposed is compared with conventional artificial neural network methods such as multilayer perceptron and radial basis function on a number of metallic specimens with different *** results confirm the superiority of the proposed method for characterizing defects compared to other classical training-oriented methods。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分