咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Deep Reinforcement Learning fo... 收藏

Deep Reinforcement Learning for Multi-Phase Microstructure Design

作     者:Jiongzhi Yang Srivatsa Harish Candy Li Hengduo Zhao Brittney Antous Pinar Acar 

作者机构:Virginia Polytechnic Institute and State UniversityBlacksburg24061VAUSA 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2021年第68卷第7期

页      面:1285-1302页

核心收录:

学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 

基  金:funded by the NASA Virginia Space Grant Consortium Grant(Project Title:“Deep Reinforcement Learning for De-Novo Computational Design of Meta-Materials”) 

主  题:Deep learning reinforcement learning microstructure design 

摘      要:This paper presents a de-novo computational design method driven by deep reinforcement learning to achieve reliable predictions and optimum properties for periodic *** recent developments in 3-D printing,microstructures can have complex geometries and material phases fabricated to achieve targeted mechanical *** material property enhancements are promising in improving the mechanical,thermal,and dynamic performance in multiple engineering systems,ranging from energy harvesting applications to spacecraft *** study investigates a novel and efficient computational framework that integrates deep reinforcement learning algorithms into finite element-based material simulations to quantitatively model and design 3-D printed periodic *** algorithms focus on improving the mechanical and thermal performance of engineering components by optimizing a microstructural architecture to meet different design ***,the machine learning solutions demonstrated equivalent results to the physics-based simulations while significantly improving the computational time *** outcomes of the project show promise to the automation of the design and manufacturing of microstructures to enable their fabrication in large quantities with the utilization of the 3-D printing technology.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分