基于改进多规则区域生长的点云多要素分割
Multi-Factor Segmentation of Point Cloud Based on Improved Multi-Rule Region Growing作者机构:中国人民解放军战略支援部队信息工程大学地理空间信息学院河南郑州450001
出 版 物:《光学学报》 (Acta Optica Sinica)
年 卷 期:2021年第41卷第5期
页 面:192-206页
核心收录:
学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 081802[工学-地球探测与信息技术] 08[工学] 0818[工学-地质资源与地质工程] 081602[工学-摄影测量与遥感] 0816[工学-测绘科学与技术]
主 题:遥感 点云分割 多要素分割 平面拟合残差 分割块合并
摘 要:针对现有点云多要素分割算法分割面状点集时分割精度低、分割块合并效果差等问题,提出了一种改进的多规则区域生长算法。一方面,计算点云数据的平面拟合残差,基于平面拟合残差设置种子点条件,对面状点集分割进行优化,以此提升面状要素分割的精度;另一方面,在距离条件的基础上,结合相似性和体积变化条件对合并策略进行改进,以实现分割块的有效合并;此外,利用中位数、Baarda数据探测法和k均值聚类分别对算法中涉及的阈值参数进行自适应设置。采用三种不同类型的点云数据进行实验,结果表明:改进算法能够提升面状点集的分割精度,提高了分割块合并的准确性;与其他算法相比,改进算法能够同时兼顾精度和效率,分割结果更具优势。