Machine learning for perovskite materials design and discovery
作者机构:Department of ChemistryCollege of SciencesShanghai UniversityShanghaiChina Materials Genome InstituteShanghai UniversityShanghaiChina
出 版 物:《npj Computational Materials》 (计算材料学(英文))
年 卷 期:2021年第7卷第1期
页 面:171-188页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Financial support to this work from the National Key Research and Development Program of China(No.2016YFB0700504) the Science and Technology Commission of Shanghai Municipality(18520723500)is gratefully acknowledged
主 题:materials perovskite inorganic
摘 要:The development of materials is one of the driving forces to accelerate modern scientific progress and technological *** learning(ML)technology is rapidly developed in many fields and opening blueprints for the discovery and rational design of *** this review,we retrospected the latest applications of ML in assisting perovskites ***,the development tendency of ML in perovskite materials publications in recent years was organized and ***,the workflow of ML in perovskites discovery was *** the applications of ML in various properties of inorganic perovskites,hybrid organic–inorganic perovskites and double perovskites were briefly *** the end,we put forward suggestions on the future development prospects of ML in the field of perovskite materials.