基于ML loss的SVM分类算法
SVM classification algorithm based on ML loss作者机构:东华大学信息科学与技术学院上海201620
出 版 物:《计算机应用研究》 (Application Research of Computers)
年 卷 期:2021年第38卷第2期
页 面:435-439页
学科分类:08[工学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:支持向量机(SVM) 损失函数 噪声 pinball LS ML loss MLSVM
摘 要:SVM的损失函数可以保证分类结果的高置信度,但同时是一个无界的凸函数,导致受噪声的影响较大。为了提高SVM在噪声环境下的分类效果,提出使用结合了pinball和LS损失函数的ML loss来降低对噪声的敏感性,将其应用到SVM中得到MLSVM模型。根据LS损失函数具有结构风险最小化的特性和等式约束来简化求解过程,然后使用pinball损失函数根据分类样本之间的最大分位数距离来确定分类超平面,再使用拉格朗日函数等方法求解MLSVM的目标函数和分类超平面。在数据集上的实验表明,相比于hinge SVM等模型,MLSVM可以降低对数据中噪声的敏感性,提升对含噪数据的分类性能。