NSST域改进ORB的泡沫流动特征提取及加药状态识别
Dosing status identification and froth flow feature extraction based on improved ORB in NSST domain作者机构:福州大学物理与信息工程学院福建福州350108 福建金东矿业股份有限公司福建三明365101
出 版 物:《光学精密工程》 (Optics and Precision Engineering)
年 卷 期:2020年第28卷第12期
页 面:2684-2699页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金资助项目(No.61471124,No.61601126) 福建省自然科学基金资助项目(No.2019J01224) 福建省中青年教师教育科研项目资助(No.JT180056)
主 题:浮选泡沫图像 流动特征提取 ORB 非下采样剪切波变换 行列自编码极限学习机 自适应随机森林
摘 要:针对浮选泡沫表面图像动态变化、光照影响、噪声干扰导致流动特征难于提取的问题,提出了一种在NSST域改进ORB的泡沫流动特征提取方法,并应用于浮选加药状态识别。对相邻两帧泡沫图像NSST分解,对多尺度高频子带先通过尺度相关系数去除噪声再分为多个内层和外层,在各内层通过方向模极大值检测提取兴趣点,然后在本层和上下层通过非极大值抑制提取特征点,采用多尺度BRIEF描述子对特征点描述,结合泡沫的运动趋势动态调整搜索的匹配区域,根据匹配结果计算泡沫流动特征。最后,构建行列自编码极限学习机对泡沫形态、尺寸分布特征和流动特征进行融合,然后通过自适应随机森林对加药状态分类识别。实验结果表明,改进的ORB受噪声和光照影响小,流动特征检测精度和效率较现有方法有较大提高,能准确地表征不同加药状态下泡沫表面的流动特性,加药状态的平均识别精度达97.85%,较现有文献方法有较大提升,为后续的加药量优化控制奠定基础。