This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates. One plate remains stationary, while the other moves downward at a squeezing velo...
详细信息
This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates. One plate remains stationary, while the other moves downward at a squeezing velocity. The space between these plates contains a Darcy-Forchheimer porous medium. A mixture of water-based fluid with gold(Au) and silicon dioxide(Si O2) nanoparticles is formulated. In contrast to the conventional Fourier's heat flux equation, this study employs the Cattaneo-Christov heat flux equation. A uniform magnetic field is applied perpendicular to the flow direction, invoking magnetohydrodynamic(MHD) effects. Further, the model accounts for Joule heating, which is the heat generated when an electric current passes through the fluid. The problem is solved via NDSolve in MATHEMATICA. Numerical and statistical analyses are conducted to provide insights into the behavior of the nanomaterials between the parallel plates with respect to the flow, energy transport, and skin *** findings of this study have potential applications in enhancing cooling systems and optimizing thermal management strategies. It is observed that the squeezing motion generates additional pressure gradients within the fluid, which enhances the flow rate but reduces the frictional drag. Consequently, the fluid is pushed more vigorously between the plates, increasing the flow velocity. As the fluid experiences higher flow rates due to the increased squeezing effect, it spends less time in the region between the plates. The thermal relaxation, however, abruptly changes the temperature, leading to a decrease in the temperature fluctuations.
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative *** the HDFSIR approach,the relay operates in decode-and-forward(DF...
详细信息
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative *** the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)*** benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy ***-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting ***,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated ***-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative *** evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel *** demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative ***,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...
详细信息
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
Large language models (LLMs) have recently shown remarkable performance in a variety of natural language processing (NLP) *** further explore LLMs'reasoning abilities in solving complex problems,recent research [1-3]h...
Large language models (LLMs) have recently shown remarkable performance in a variety of natural language processing (NLP) *** further explore LLMs'reasoning abilities in solving complex problems,recent research [1-3]has investigated chain-of-thought (CoT) reasoning in complex multimodal scenarios,such as science question answering (scienceQA) tasks [4],by fine-tuning multimodal models through human-annotated CoT ***,collected CoT rationales often miss the necessary rea-soning steps and specific expertise.
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
Partial-label learning (PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance ...
Partial-label learning (PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
The ability to accurately predict urban traffic flows is crucial for optimising city ***,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mo...
详细信息
The ability to accurately predict urban traffic flows is crucial for optimising city ***,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility *** learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal ***,these models often become overly complex due to the large number of hyper-parameters *** this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction *** comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest *** the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 ***,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer *** Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time *** numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study prop...
详细信息
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study proposes a novel end-to-end disparity estimation model to address these *** approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting *** study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and *** model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video *** results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing ***,the model exhibited faster convergence during training,contributing to overall performance *** study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of cyber-security. The authors model the system using an automaton and study the general no...
The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of cyber-security. The authors model the system using an automaton and study the general notion of detectability where a given set of state pairs needs to be(eventually or periodically) distinguished in any estimate of the state of the system. The authors adopt the ALTER sensor attack model from previous work and formulate four notions of CA-detectability in the context of this attack model based on the following attributes: strong or weak; eventual or periodic. The authors present verification methods for strong CA-detectability and weak CA-detectability. The authors present definitions of strong and weak periodic CA-detectability that are based on the construction of a verifier automaton called the augmented CA-observer. The development also resulted in relaxing assumptions in prior results on D-detectability, which is a special case of CA-detectability.
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large extent by the assumption of attribute independence. To address this issue, this paper proposes a novel attribute grouping-based NBC(AG-NBC), which is a variant of the classical NBC trained with different attribute groups. AG-NBC first applies a novel effective objective function to automatically identify optimal dependent attribute groups(DAGs). Condition attributes in the same DAG are strongly dependent on the class attribute, whereas attributes in different DAGs are independent of one another. Then,for each DAG, a random vector functional link network with a SoftMax layer is trained to output posterior probabilities in the form of joint probability density estimation. The NBC is trained using the grouping attributes that correspond to the original condition attributes. Extensive experiments were conducted to validate the rationality, feasibility, and effectiveness of AG-NBC. Our findings showed that the attribute groups chosen for NBC can accurately represent attribute dependencies and reduce overlaps between different posterior probability densities. In addition, the comparative results with NBC, flexible NBC(FNBC), tree augmented Bayes network(TAN), gain ratio-based attribute weighted naive Bayes(GRAWNB), averaged one-dependence estimators(AODE), weighted AODE(WAODE), independent component analysis-based NBC(ICA-NBC), hidden naive Bayesian(HNB) classifier, and correlation-based feature weighting filter for naive Bayes(CFW) show that AG-NBC obtains statistically better testing accuracies, higher area under the receiver operating characteristic curves(AUCs), and fewer probability mean square errors(PMSEs) than other Bayesian classifiers. The experimental results demonstrate that AG-NBC is a valid and efficient approach for alleviating the attribute i
暂无评论