This study presents an analysis of sediments in an Andean river impacted by both natural conditions and anthropogenic activities. Fifty samples were collected from selected sites throughout the Moquegua River drainage...
详细信息
This study presents an analysis of sediments in an Andean river impacted by both natural conditions and anthropogenic activities. Fifty samples were collected from selected sites throughout the Moquegua River drainage basin, and Tambo River headwaters at Pasto Grande, in Peru, and analysed with X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. Si, Ca, Al, Fe, and O, common constituents of soils, were dominant, along with K, N, and P. The latter originating as primary macronutrients or chemical residuals from fertilizers used in agriculture. Higher concentrations of macronutrients and organic components were found in agricultural and urban areas, respectively. Arsenic minerals were also detected, which occur naturally, but possibly at levels augmented by anthropogenic activity. The application of cluster analysis revealed clustering between arsenic, arsenolite, and potassium but no significant geospatial correlation between sample sites in the drainage basin.
Structural and magnetic studies of monophasic maghemite (γ-Fe2O3) magnetic nanocrystallites (MNCs) synthesized by the co-precipitation chemical route are reported in this paper. For the synthesis, a starting precurso...
详细信息
Structural and magnetic studies of monophasic maghemite (γ-Fe2O3) magnetic nanocrystallites (MNCs) synthesized by the co-precipitation chemical route are reported in this paper. For the synthesis, a starting precursor of magnetite (Fe3O4) in basic medium was oxidized at room temperature by adjusting the pH = 3.5 at 80°C in an acidic medium without surfactants. X-ray diffraction (XRD) pattern shows widened peaks indicating nanometric size and Rietveld Refinement confirms only one single-phase assigned to γ-Fe2O3 MNCs. High Resolution Transmission Electron Microscopy (HR-TEM) demonstrates the formation of nanoparticles with diameter around D ≈ 6.8 ± 0.1 nm which is in good agreement with Rietveld Refinement (6.4 ± 1 nm). A selected area electron diffraction pattern was carried out to complement the study of the crystalline structure of the γ-Fe2O3 MNCs. M(H) measurements taken at different temperatures show almost zero coercivity and remanence indicating superparamagnetic domain and high magnetic saturation.
暂无评论