This work focuses on blending Jatropha oil with diesel fuel and heptane to improve its physico-chemical characteristics for production of blends and their use as fuel in a diesel engine. The influence of the heptane c...
详细信息
This work focuses on blending Jatropha oil with diesel fuel and heptane to improve its physico-chemical characteristics for production of blends and their use as fuel in a diesel engine. The influence of the heptane content was evaluated by comparing the results obtained from the engine (performance and combustion parameters) with those of the diesel fuel and straight Jatropha oil. The results obtained show an improvement in engine performance especially at low loads. Specifically, a reduction in the specific fuel consumption of the engine is obtained when the heptane content in the mixture is around 10% compared to that obtained with pure Jatropha oil. The best results were obtained with the blend containing 70% Jatropha oil, 20% diesel fuel and 10% heptane (J70G20H10). Overall engine efficiency and exhaust gas temperatures are comparable for all fuels tested. Engine combustion parameters are improved with J70G20H10. The results obtained with J70G20H10 are close to those of the engine operating on diesel fuel. The cyclic dispersion is low with coefficients of variation of the indicated mean effective pressure (COVIMEP) whose values are less than 10%. The lowest values of the COVIMEP are obtained with the blend J70G20H10.
Phytochemical screening and assay of secondary metabolites, crude extracts with distilled water, aqueous methanol, aqueous acetone and aqueous ethanol of leaves and seeds of Senna occidentalis L. were studied in this ...
详细信息
Phytochemical screening and assay of secondary metabolites, crude extracts with distilled water, aqueous methanol, aqueous acetone and aqueous ethanol of leaves and seeds of Senna occidentalis L. were studied in this work. The aim was to verify the distribution of secondary metabolites according to S. occidentalis organs. Four leaf samples from four different localities (South, East, West and Central Senegal) and a mixed sample of seeds were used. Functional molecules such as polyphenols, flavonoids and tannins were then assessed in the leaves and seeds using various standard methods. The results show that Senna occidentalis L. leaf and seed samples display an identical and homogeneous profile, regardless of locality. They contain secondary metabolites and the polyphenol content of extracts from southern, eastern, western and central leaves is: 0.620 - 0.539 - 0.811 - 0.573 g GAE/100 g DM;flavonoids: 0.064 - 0.074 - 0.130 - 0.101 g CE/100 g DM and tannins: 0.326 - 0.264 - 0.269 - 0.494 g TAE/100 g DM. The efficacy of S. occidentalis L. infusions in therapy is thus justified by the presence of these metabolites, whose biological properties are well known. It is then possible to explore isolation of active principles of Senna occidentalis L. leaves and even seeds for producing medicines.
暂无评论