现有基于人工智能的电缆故障诊断方法缺乏处理故障动态差异化发展的能力,其不能适应新的故障场景,无法随着时间的推移增强诊断能力。鉴于此,本文在深度卷积神经网络(deep convolutional neural network,DCNN)的基础上,融合知识蒸馏与注意力机制提出一种电缆故障可扩展化诊断方法(DCNN with knowledge distillation and attention,DCNN-KD-A)。引入知识蒸馏思想,保留DCNN模型对原有故障的诊断信息,同时利用新增故障的分类损失对模型进行拓展修正,使其具备故障可扩展化诊断的能力。为避免模型训练中的灾难性遗忘问题,重新构建了相适应的故障分类器。为应对知识蒸馏中的信息损耗与改变,利用注意力机制增强模型的特征凝练作用,提升其可扩展化诊断精度。通过实测与仿真数据进行实验,实验结果验证了本文所提方法的有效性和可行性。
暂无评论