咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 网络空间安全
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 intrusion detect...
  • 2 篇 anomaly detectio...
  • 2 篇 shell command
  • 1 篇 discrete-time ma...
  • 1 篇 machine learning

机构

  • 1 篇 department of el...
  • 1 篇 research institu...
  • 1 篇 institute of com...
  • 1 篇 school of electr...
  • 1 篇 key laboratory o...
  • 1 篇 graduate school ...
  • 1 篇 state key labora...

作者

  • 2 篇 tian xin-guang
  • 1 篇 zhai qi-bin
  • 1 篇 zhang er-yang
  • 1 篇 gao li-zhi
  • 1 篇 sun chun-lai
  • 1 篇 duan mi-yi
  • 1 篇 xiao xi
  • 1 篇 xia shu-tao

语言

  • 2 篇 英文
检索条件"主题词=shell command"
2 条 记 录,以下是1-10 订阅
排序:
A Method for Anomaly Detection of User Behaviors Based on Machine Learning
收藏 引用
The Journal of China Universities of Posts and Telecommunications 2006年 第2期13卷 61-65,78页
作者: TIAN Xin-guang GAO Li-zhi SUN Chun-lai DUAN Mi-yi ZHANG Er-yang School of Electronic Science and Engineering National University of Defense Technology Changsha 410073 P.R. China Department of Electronic Engineering Tsinghua University Beijing 100084 P.R. China Research Institute of Beijing Capitel Group Corporation Beijing 100016 P.R. China Institute of Computing Technology Beijing Jiaotong University Beijing 100029 P.R. China
This paper presents a new anomaly detection method based on machine learning. Applicable to host-based intrusion detection .systems, this method uses shell commands as audit data. The method employs shell command sequ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Anomaly detection of user behavior based on DTMC with states of variable-length sequences
收藏 引用
The Journal of China Universities of Posts and Telecommunications 2011年 第6期18卷 106-115页
作者: XIAO Xi XIA Shu-tao TIAN Xin-guang ZHAI Qi-bin Graduate School at Shenzhen Tsinghua University Shenzhen 518055 China State Key Laboratory of Information Security Graduate University of Chinese Academy of Sciences Beijing 100049 China Key Laboratory of Network Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China
In anomaly detection, a challenge is how to model a user's dynamic behavior. Many previous works represent the user behavior based on fixed-length models. To overcome their shortcoming, we propose a novel method base... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论