咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 sensor bias-driv...
  • 1 篇 convolutional ne...
  • 1 篇 spatio-temporal ...

机构

  • 1 篇 school of automa...
  • 1 篇 guangdong provin...
  • 1 篇 state key labora...
  • 1 篇 hyperspectral co...

作者

  • 1 篇 yunfei li
  • 1 篇 jin chen
  • 1 篇 lin he
  • 1 篇 jun li
  • 1 篇 antonio plaza

语言

  • 1 篇 英文
检索条件"主题词=sensor bias-driven STF"
1 条 记 录,以下是1-10 订阅
排序:
A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks
收藏 引用
Science China(Information Sciences) 2020年 第4期63卷 24-39页
作者: Yunfei LI Jun LI Lin HE Jin CHEN Antonio PLAZA Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation School of Geography and Planning Sun Yat-sen University School of Automation Science and Engineering South China University of Technology State Key Laboratory of Earth Surface Processes and Resource Ecology Institute of Remote Sensing Science and Engineering Faculty of Geographical ScienceBeijing Normal University Hyperspectral Computing Laboratory Department of Technology of Computers and CommunicationsEscuela Politécnica University of Extremadura
Owing to the tradeoff between scanning swath and pixel size, currently no satellite Earth observation sensors are able to collect images with high spatial and temporal resolution simultaneously. This limits the applic... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论