咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 non-negative sol...
  • 1 篇 deep learning
  • 1 篇 pattern recognit...
  • 1 篇 convolutional ne...
  • 1 篇 networks
  • 1 篇 long short-term ...
  • 1 篇 reactive-transpo...
  • 1 篇 spatial-temporal...

机构

  • 1 篇 department of me...
  • 1 篇 atmospheric scie...
  • 1 篇 department of ci...

作者

  • 1 篇 k.b.nakshatrala
  • 1 篇 m.k.mudunuru
  • 1 篇 n.v.jagtap

语言

  • 1 篇 英文
检索条件"主题词=reactive-transport"
1 条 记 录,以下是1-10 订阅
排序:
A Deep Learning Modeling Framework to Capture Mixing Patterns in reactive-transport Systems
收藏 引用
Communications in Computational Physics 2022年 第1期31卷 188-223页
作者: N.V.Jagtap M.K.Mudunuru K.B.Nakshatrala Department of Mechanical Engineering University of HoustonTexas 77204USA Atmospheric Sciences&Global Change Division Pacific Northwest National LaboratoryRichlandWashington 99352USA Department of Civil&Environmental Engineering University of HoustonHoustonTexas 77204USA
Prediction and control of chemical mixing are vital for many scientific areas such as subsurface reactive transport, climate modeling, combustion, epidemiology, and pharmacology. Due to the complex nature of mixing ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论