咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 理学
    • 12 篇 数学
    • 1 篇 物理学
  • 1 篇 工学
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...

主题

  • 14 篇 porous medium eq...
  • 4 篇 blow-up
  • 2 篇 critical exponen...
  • 1 篇 weakly nonlinear...
  • 1 篇 localization pro...
  • 1 篇 nonlocal diffusi...
  • 1 篇 positive initial...
  • 1 篇 hlder continuit...
  • 1 篇 a priori estimat...
  • 1 篇 nonlocal boundar...
  • 1 篇 blow-up behavior
  • 1 篇 periodic solutio...
  • 1 篇 life span bounds
  • 1 篇 porosity
  • 1 篇 marchaud derivat...
  • 1 篇 aronson-benilan ...
  • 1 篇 ricci flow
  • 1 篇 support
  • 1 篇 caputo derivativ...
  • 1 篇 cone

机构

  • 2 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 institute of mat...
  • 1 篇 beijng institute
  • 1 篇 department of ap...
  • 1 篇 college of mathe...
  • 1 篇 department of ma...
  • 1 篇 dipartimento di ...
  • 1 篇 state key labora...
  • 1 篇 school of mathem...
  • 1 篇 college of mathe...
  • 1 篇 institute of mat...
  • 1 篇 department of co...
  • 1 篇 infn sezione di ...
  • 1 篇 institute of mat...
  • 1 篇 department of ma...
  • 1 篇 college of mathe...
  • 1 篇 school of mathem...
  • 1 篇 department of ma...

作者

  • 3 篇 尹景学
  • 1 篇 cheng wang
  • 1 篇 穆春来
  • 1 篇 yang jichen
  • 1 篇 jinlan hao
  • 1 篇 lingling zhang
  • 1 篇 luis caffarelli
  • 1 篇 chang chun liu
  • 1 篇 akira igarashi
  • 1 篇 zhu xiaobao
  • 1 篇 xingye yue
  • 1 篇 koffi b. fadimba
  • 1 篇 antonio botrugno
  • 1 篇 lamberto rondoni
  • 1 篇 alexis vasseur
  • 1 篇 liu dengming
  • 1 篇 chenghua duan
  • 1 篇 王一夫
  • 1 篇 李玉环
  • 1 篇 伍卓群

语言

  • 12 篇 英文
  • 2 篇 中文
检索条件"主题词=porous medium equation"
14 条 记 录,以下是1-10 订阅
排序:
Convergence Analysis of a Numerical Scheme for the porous medium equation by an Energetic Variational Approach
收藏 引用
Numerical Mathematics(Theory,Methods and Applications) 2020年 第1期13卷 63-80页
作者: Chenghua Duan Chun Liu Cheng Wang Xingye Yue Department of Mathematics Soochow UniversitySuzhou 215006China Shanghai Center for Mathematical Sciences Fudan UniversityShanghai 200438China Department of Applied Mathematics Illinois Institute of TechnologyChicagoIL 60616USA Department of Mathematics University of MassachusettsDartmouthNorth DartmouthMA 02747-2300USA
The porous medium equation(PME)is a typical nonlinear degenerate parabolic *** have studied numerical methods for PME by an energetic vari-ational approach in[*** et al.,***.,385(2019),pp.13–32],where the trajectory ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
BLOW-UP OF THE SOLUTION FOR A CLASS OF porous medium equation WITH POSITIVE INITIAL ENERGY
收藏 引用
Acta Mathematica Scientia 2013年 第4期33卷 1024-1030页
作者: 吴秀兰 高文杰 Institute of Mathematics Jilin University College of Mathematics Jilin Normal University
This paper deals with a class of porous medium equation ut=△u^m+f(u)with homogeneous Dirichlet boundary conditions. The blow-up criteria is established by using the method of energy under the suitable condition on... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
COMPLEXITY OF ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE porous medium equation WITH ABSORPTION
收藏 引用
Acta Mathematica Scientia 2010年 第6期30卷 1865-1880页
作者: 尹景学 王良伟 黄锐 Department of Mathematics Jilin University School of Mathematical Sciences South China Normal University
In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Blow-up for a porous medium equation with Local Linear Boundary Dissipation
收藏 引用
Wuhan University Journal of Natural Sciences 2024年 第2期29卷 95-105页
作者: YANG Jichen LIU Dengming School of Mathematics and Computational Science Hunan University of Science and TechnologyXiangtan 411201HunanChina
This article investigates the blow-up behaviors for a porous medium equation with a superlinear source and local linear boundary *** use of the concavity method,we establish sufficient conditions to guarantee the occu... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
A Formulation of the porous medium equation with Time-Dependent Porosity: A Priori Estimates and Regularity Results
收藏 引用
Applied Mathematics 2024年 第10期15卷 745-763页
作者: Koffi B. Fadimba Department of Computer Science Engineering and Mathematics University of South Carolina Aiken Aiken USA
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Fujita Exponent for porous medium equation with Convection and Nonlinear Boundary Condition
收藏 引用
Northeastern Mathematical Journal 2003年 第4期19卷 387-395页
作者: 王泽佳 尹景学 Department of Mathematics Jilin University Changchun 130012 Department of Mathematics Jilin University Changchun 130012his paper is concerned with the critical exponent of the porous medium equation with convection and nonlinear boundary condition. It is shown that the coefficient of the lower order term is an important factor that determines the critical exponent.
This paper is concerned with the critical exponent of the porous medium equation with convection and nonlinear boundary condition. It is shown that the coefficient of the lower order term is an important factor that d... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Blow-up and Global Solutions for a porous medium equation Under Robin Boundary Conditions
Blow-up and Global Solutions for a Porous Medium Equation Un...
收藏 引用
第32届中国控制与决策会议
作者: Jinlan Hao Lingling Zhang Department of Mathematics Taiyuan University of Technology State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology
This paper deals with blow-up and global solutions for a porous medium equation under Robin boundary *** constructing auxiliary functions and using modified differential inequality techniques,we establish conditions t... 详细信息
来源: cnki会议 评论
Local Aronson-Benilan Estimates for porous medium equations under Ricci Flow
收藏 引用
Journal of Partial Differential equations 2011年 第4期24卷 324-333页
作者: ZHU Xiaobao Institute of Mathematics Academy of Mathematics and Systems Sciences ChineseAcademy of Sciences Beijing 100190 China.
In this work we derive local gradient estimates of the Aronson-Benilan type for positive solutions of porous medium equations under Ricci flow with bounded Ricci curvature. As an application, we derive a Harnack type ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Nonlinear Diffusion and Transient Osmosis
收藏 引用
Communications in Theoretical Physics 2011年 第8期56卷 352-366页
作者: Akira Igarashi Lamberto Rondoni Antonio Botrugno Marco Pizzi Dipartimento di Matematica Politecnico di Torino INFN Sezione di Torino Kavli Institute for Theoretical Physics China CAS Eltek Group
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
porous medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
收藏 引用
Chinese Annals of Mathematics,Series B 2017年 第1期38卷 45-82页
作者: Mark ALLEN Luis CAFFARELLI Alexis VASSEUR Department of Mathematics The University of Texas at AustinAustinTX 78712USA
The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian *** derivative in time is also fractional and is of Caputo-type, ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论