咨询与建议

限定检索结果

文献类型

  • 44 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 20 篇 控制科学与工程
    • 5 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 2 篇 网络空间安全
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 航空宇航科学与技...
    • 1 篇 公安技术
  • 20 篇 管理学
    • 20 篇 管理科学与工程(可...
  • 16 篇 理学
    • 16 篇 数学
  • 2 篇 医学
    • 2 篇 中西医结合
    • 2 篇 药学(可授医学、理...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 46 篇 graph neural net...
  • 9 篇 deep learning
  • 4 篇 machine learning
  • 3 篇 session-based re...
  • 3 篇 training
  • 2 篇 multi-head atten...
  • 2 篇 natural language...
  • 2 篇 data mining
  • 2 篇 heterophily
  • 2 篇 feature extracti...
  • 2 篇 convolutional ne...
  • 1 篇 domain lexicons
  • 1 篇 internet of thin...
  • 1 篇 vocabulary words...
  • 1 篇 intrusion detect...
  • 1 篇 robotic skill le...
  • 1 篇 receptive field
  • 1 篇 spatio-temporal ...
  • 1 篇 representation l...
  • 1 篇 power grids

机构

  • 2 篇 college of compu...
  • 1 篇 pendulum systems...
  • 1 篇 cas centre for e...
  • 1 篇 school of inform...
  • 1 篇 school of comput...
  • 1 篇 software campus ...
  • 1 篇 school of mathem...
  • 1 篇 alibaba-zhejiang...
  • 1 篇 school of electr...
  • 1 篇 national-local j...
  • 1 篇 school of artifi...
  • 1 篇 lanzhou ji er ai...
  • 1 篇 center for compu...
  • 1 篇 research institu...
  • 1 篇 state key lab of...
  • 1 篇 department of co...
  • 1 篇 school of inform...
  • 1 篇 school of comput...
  • 1 篇 school of cyber ...
  • 1 篇 faculty of geoma...

作者

  • 2 篇 maoguo gong
  • 1 篇 bin kang
  • 1 篇 sangwoo park
  • 1 篇 yongdong zhang
  • 1 篇 qingsong li
  • 1 篇 chunyan ji
  • 1 篇 wu-jun li
  • 1 篇 xu-hui zhou
  • 1 篇 zhenxing wu
  • 1 篇 huamin feng
  • 1 篇 ming chen
  • 1 篇 sufen zhao
  • 1 篇 weigang zhu
  • 1 篇 zexin zhang
  • 1 篇 vikas chandan
  • 1 篇 bakun zhu
  • 1 篇 tingjun hou
  • 1 篇 jiadai sun
  • 1 篇 jinxue peng
  • 1 篇 wan-jian yin

语言

  • 44 篇 英文
  • 2 篇 中文
检索条件"主题词=graph neural networks"
46 条 记 录,以下是1-10 订阅
排序:
On the size generalizibility of graph neural networks for learning resource allocation
收藏 引用
Science China(Information Sciences) 2024年 第4期67卷 239-254页
作者: Jiajun WU Chengjian SUN Chenyang YANG Beihang University School of Electronics and Information Engineering
Size generalization is important for learning resource allocation policies in wireless systems with time-varying scales. If a neural network for learning a wireless policy is not generalizable to the size of its input... 详细信息
来源: 同方期刊数据库 同方期刊数据库 同方期刊数据库 同方期刊数据库 评论
Drug-Target Interactions Prediction Based on Signed Heterogeneous graph neural networks
收藏 引用
Chinese Journal of Electronics 2024年 第1期33卷 231-244页
作者: Ming CHEN Yajian JIANG Xiujuan LEI Yi PAN Chunyan JI Wei JIANG College of Information Science and Engineering Hunan Normal University School of Computer Science Shaanxi Normal University Faculty of Computer Science and Control Engineering Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Computer Science Department BNU-HKBU United International College
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
Accurate and efficient floor localization with scalable spiking graph neural networks
收藏 引用
Satellite Navigation 2024年 第1期5卷 191-206页
作者: Fuqiang Gu Fangming Guo Fangwen Yu Xianlei Long Chao Chen Kai Liu Xuke Hu Jianga Shang Songtao Guo College of Computer Science Chongqing UniversityChongqingChina Department of Precision Instrument Tsinghua UniversityBeijingChina Institute of Data Science German Aerospace Center(DLR)JenaGermany School of Computer Science China University of GeosciencesWuhanChina
Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender *** existing floor localization systems have many drawbacks,like low accuracy,poor scalab... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Re-quantization based binary graph neural networks
收藏 引用
Science China(Information Sciences) 2024年 第7期67卷 160-171页
作者: Kai-Lang YAO Wu-Jun LI National Key Laboratory for Novel Software Technology Department of Computer Science and TechnologyNanjing University
Binary neural networks have become a promising research topic due to their advantages of fast inference speed and low energy consumption. However, most existing studies focus on binary convolutional neural networks, w... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
Federated Collaborative graph neural networks for Few-shot graph Classification
收藏 引用
Machine Intelligence Research 2024年 第6期21卷 1077-1091页
作者: Yu Xie Yanfeng Liang Chao Wen A.K.Qin Maoguo Gong School of Computer and Information Technology Shanxi UniversityTaiyuan030000China Key Laboratory of Collaborative Intelligence Systems of Ministry of Education Xidian UniversityXi’an710071China Department of Computer Science and Software Engineering Swinburne University of TechnologyMelbourne3000Australia
graph neural networks(GNNs)have achieved state-of-the-art performance on graph classification tasks,which aim to pre-dict the class labels of entire graphs and have widespread ***,existing GNN based methods for graph ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Robust Regularization Design of graph neural networks Against Adversarial Attacks Based on Lyapunov Theory
收藏 引用
Chinese Journal of Electronics 2024年 第3期33卷 732-741页
作者: Wenjie YAN Ziqi LI Yongjun QI School of Artificial Intelligence Hebei University of Technology School of Computer Science and Engineering of North China Institute of Aerospace Engineering
The robustness of graph neural networks(GNNs) is a critical research topic in deep *** researchers have designed regularization methods to enhance the robustness of neural networks,but there is a lack of theoretical... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
Investigating the Logical Capability of graph neural networks via the Connection to C_(2)
收藏 引用
Data Intelligence 2024年 第3期6卷 720-748页
作者: Zhangquan Zhou Shijiao Tang School of Command and Control Engineering Army Engineering University of PLA Nanjing 210001China School of Information Science and Engineering Nanjing Audit University Jinshen College Nanjing 210023China
graph neural networks(GNNs)have garnered substantial application across a spectrum of real-world scenarios due to their remarkable ability to handle data organized in the form of ***,the full extent of GNNs'computatio... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Towards adaptive graph neural networks via solving prior-data conflicts
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2024年 第3期25卷 369-383页
作者: Xugang WU Huijun WU Ruibo WANG Xu ZHOU Kai LU College of Computer National University of Defense TechnologyChangsha 410073China
graph neural networks(GNNs)have achieved remarkable performance in a variety of graph-related *** evidence in the GNN community shows that such good performance can be attributed to the homophily prior;i.e.,connected ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Multi-Head Attention Spatial-Temporal graph neural networks for Traffic Forecasting
收藏 引用
Journal of Computer and Communications 2024年 第3期12卷 52-67页
作者: Xiuwei Hu Enlong Yu Xiaoyu Zhao School of Computer Science and Technology Shandong University of Technology Zibo China Shandong Deyun Land Real Estate Appraisal Consulting Co. Zibo China College of Computer and Control Engineering Qiqihar University Qiqihar China
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A review on the applications of graph neural networks in materials science at the atomic scale
收藏 引用
Materials Genome Engineering Advances 2024年 第2期2卷 1-19页
作者: Xingyue Shi Linming Zhou Yuhui Huang Yongjun Wu Zijian Hong School of Materials Science and Engineering Zhejiang UniversityHangzhouZhejiangChina Nanhu Brain-Computer Interface Institute HangzhouZhejiangChina Research Institute of Zhejiang University-Taizhou TaizhouZhejiangChina State Key Laboratory of Silicon and Advanced Semiconductor Materials Zhejiang UniversityHangzhouZhejiangChina
In recent years,interdisciplinary research has become increasingly popular within the scientific *** fields of materials science and chemistry have also gradually begun to apply the machine learning technology develop... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论