咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 23 篇 计算机科学与技术...
    • 16 篇 控制科学与工程
    • 15 篇 软件工程
    • 3 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 矿业工程
    • 1 篇 环境科学与工程(可...
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 8 篇 医学
    • 7 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 2 篇 理学
    • 1 篇 大气科学
    • 1 篇 系统科学

主题

  • 35 篇 explainable ai
  • 7 篇 deep learning
  • 7 篇 machine learning
  • 3 篇 transfer learnin...
  • 3 篇 cybersecurity
  • 2 篇 anomaly detectio...
  • 2 篇 lime
  • 2 篇 shap
  • 2 篇 trustworthy
  • 2 篇 artificial intel...
  • 1 篇 flood susceptibi...
  • 1 篇 crosslinknet
  • 1 篇 scientific machi...
  • 1 篇 covid-19
  • 1 篇 vision transform...
  • 1 篇 wavelet transfor...
  • 1 篇 causality
  • 1 篇 data imbalance
  • 1 篇 separation effic...
  • 1 篇 reliability

机构

  • 2 篇 faculty of infor...
  • 2 篇 school of radiol...
  • 2 篇 school of hearth...
  • 1 篇 state key labora...
  • 1 篇 department of el...
  • 1 篇 centre for secur...
  • 1 篇 department of co...
  • 1 篇 school of scienc...
  • 1 篇 department of el...
  • 1 篇 arizona state un...
  • 1 篇 xlab the second ...
  • 1 篇 software departm...
  • 1 篇 ningbo institute...
  • 1 篇 centre for renew...
  • 1 篇 future energy ce...
  • 1 篇 international st...
  • 1 篇 school of comput...
  • 1 篇 prince abdullah ...
  • 1 篇 the sargent cent...
  • 1 篇 school of innova...

作者

  • 2 篇 eri matsuyama
  • 2 篇 haruyuki watanab...
  • 2 篇 noriyuki takahas...
  • 1 篇 jinchuan qian
  • 1 篇 kai fang
  • 1 篇 surbhi bhatia kh...
  • 1 篇 h.nasiri
  • 1 篇 muhammad shahree...
  • 1 篇 qi zhong
  • 1 篇 paula maddigan
  • 1 篇 jia uddin
  • 1 篇 abhirup dikshit
  • 1 篇 jun lu
  • 1 篇 bojian chen
  • 1 篇 hua mu
  • 1 篇 jingxue chen
  • 1 篇 waqar muhammad a...
  • 1 篇 megumi takehara
  • 1 篇 m.alidokht
  • 1 篇 liang shi

语言

  • 34 篇 英文
  • 1 篇 中文
检索条件"主题词=explainable AI"
35 条 记 录,以下是1-10 订阅
排序:
explainable ai-Based DDoS Attacks Classification Using Deep Transfer Learning
收藏 引用
Computers, Materials & Continua 2024年 第9期80卷 3785-3802页
作者: Ahmad Alzu’bi Amjad Albashayreh Abdelrahman Abuarqoub Mai A.M.Alfawair Department of Computer Science Jordan University of Science and TechnologyIrbid22110Jordan Department of Computer Science The University of JordanAmman11942Jordan Cardiff School of Technologies Cardiff Metropolitan UniversityCardiffCF52YBUK Prince Abdullah bin Ghazi Faculty of Information and Communication Technology Al-Balqa Applied UniversitySalt19117Jordan
In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse *** the convenience and efficiency offered by IoT technology... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
explainable ai Enabled Infant Mortality Prediction Based on Neonatal Sepsis
收藏 引用
Computer Systems Science & Engineering 2023年 第1期44卷 311-325页
作者: Priti Shaw Kaustubh Pachpor Suresh Sankaranarayanan Barclays Bank Bund Garden RoadPune411001India University of Illinois 60607IllinoisUSA SRM Institute of Science and Technology Chennai603203India
Neonatal sepsis is the third most common cause of neonatal mortality and a serious public health problem,especially in developing *** have been researches on human sepsis,vaccine response,and ***,machine learning meth... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Machine Fault Diagnosis Using Audio Sensors Data and explainable ai Techniques-LIME and SHAP
收藏 引用
Computers, Materials & Continua 2024年 第9期80卷 3463-3484页
作者: Aniqua Nusrat Zereen Abir Das Jia Uddin School of Data and Sciences Brac UniversityDhaka1212Bangladesh JW KIM College of Future Studies Endicott CollegeWoosong UniversityDaejeon300-718Republic of Korea ai and Big Data Department Endicott CollegeWoosong UniversityDaejeon300-718Republic of Korea
Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited *** learning models,espe... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using explainable ai
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第9期140卷 2425-2448页
作者: Md.Atiqur Rahman Mustavi Ibne Masum Khan Md Hasib M.F.Mridha Sultan Alfarhood Mejdl Safran Dunren Che Department of Computer Science and Engineering Ahsanullah University of Science and TechnologyDhaka1208Bangladesh Department of Computer Science and Software Engineering The University of Western AustraliaPerthWA 6009Australia Department of Computer Science American International University-BangladeshDhaka1229Bangladesh Department of Computer Science College of Computer and Information SciencesKing Saud UniversityP.O.Box 51178Riyadh11543Saudi Arabia School of Computing Southern Illinois UniversityCarbondale62901USA
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global *** study addresses the pressing issue of brain tumor classification using Magnetic reson... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with explainable ai
收藏 引用
Computers, Materials & Continua 2024年 第9期80卷 5029-5045页
作者: Sannasi Chakravarthy Bharanidharan Nagarajan Surbhi Bhatia Khan Vinoth Kumar Venkatesan Mahesh Thyluru Ramakrishna Ahlam AlMusharraf Khursheed Aurungzeb Department of Electronics and Communication Engineering Bannari Amman Institute of TechnologySathyamangalam638402India School of Computer Science Engineering and Information Systems(SCORE) Vellore Institute of TechnologyVellore632014India School of Science Engineering and EnvironmentUniversity of SalfordManchesterM54WTUK Department of Computer Science&Engineering Faculty of Engineering and TechnologyJAIN(Deemed-to-be University)Bengaluru562112India Department of Management College of Business AdministrationPrincess Nourah Bint Abdulrahman UniversityP.O.Box 84428Riyadh11671Saudi Arabia Department of Computer Engineering College of Computer and Information SciencesKing Saud UniversityP.O.Box 51178Riyadh11543Saudi Arabia Adjunct Research Faculty Centre for Research Impact&OutcomeChitkara UniversityRajpura140401India
Breast cancer is a type of cancer responsible for higher mortality rates among *** cruelty of breast cancer always requires a promising approach for its earlier *** light of this,the proposed research leverages the re... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Transparent and Accurate COVID-19 Diagnosis:Integrating explainable ai with Advanced Deep Learning in CT Imaging
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第6期139卷 3101-3123页
作者: Mohammad Mehedi Hassan Salman A.AlQahtani Mabrook S.AlRakhami Ahmed Zohier Elhendi Department of Information Systems College of Computer and Information SciencesKing Saud UniversityRiyadh11543Saudi Arabia Department of Computer Engineering College of Computer and Information SciencesKing Saud UniversityRiyadh11543Saudi Arabia Science Technology and Innovation Department King Saud UniversityRiyadh11543Saudi Arabia
In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly *** its potent... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
An explainable ai model for power plant NOx emission control
收藏 引用
Energy and ai 2024年 第1期15卷 171-180页
作者: Yuanye Zhou Ioanna Aslanidou Mikael Karlsson Konstantinos Kyprianidis School of Business Society and EngineeringMälardalens UniversityUniversitetsplan 172220VästeråsSweden Future Energy Centre Mälardalens UniversityUniversitetsplan 172220VästeråsSweden School of Innovation Design and EngineeringMälardalens UniversityUniversitetsplan 172220VästeråsSweden
In recent years,developing Artificial Intelligence(ai)models for complex system has become a popular research *** have been several successful ai models for predicting the Selective Non-Catalytic Reduction(SNCR)system... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
explainable ai and Interpretable Model for Insurance Premium Prediction
收藏 引用
Journal on Artificial Intelligence 2023年 第1期5卷 31-42页
作者: Umar Abdulkadir Isa Anil Fernando Department of Computer and Information Science University of StrathclydeGlasgowUK
Traditional machine learning metrics(TMLMs)are quite useful for the current research work precision,recall,accuracy,MSE and *** enough for a practitioner to be confident about the performance and dependability of inno... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
explainable-ai-based two-stage solution for WSN object localization using zero-touch mobile transceivers
收藏 引用
Science China(Information Sciences) 2024年 第7期67卷 27-45页
作者: Kai FANG Junxin CHEN Han ZHU Thippa Reddy GADEKALLU Xiaoping WU Wei WANG School of Mathematics and Computer Science Zhejiang A&F University School of Software Dalian University of Technology Faculty of Applied Sciences Macao Polytechnic University Department of Electrical and Computer Engineering Lebanese American University School of Information Engineering Huzhou University Guangdong-Hong Kong-Macao Joint Laboratory for Emotional Intelligence and Pervasive Computing Artificial Intelligence Research Institute Shenzhen MSU-BIT University
Artificial intelligence technology is widely used in the field of wireless sensor networks(WSN).Due to its inexplicability, the interference factors in the process of WSN object localization cannot be effectively elim... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
CrossLinkNet: An explainable and Trustworthy ai Framework for Whole-Slide Images Segmentation
收藏 引用
Computers, Materials & Continua 2024年 第6期79卷 4703-4724页
作者: Peng Xiao Qi Zhong Jingxue Chen Dongyuan Wu Zhen Qin Erqiang Zhou Network and Data Security Key Laboratory of Sichuan Province University of Electronic Science and Technology of ChinaChengdu610054China Faculty of Data Science City University of MacaoMacao999078China
In the intelligent medical diagnosis area,Artificial Intelligence(ai)’s trustworthiness,reliability,and interpretability are critical,especially in cancer *** neural networks,while excellent at processing natural ima... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论